This week, I attended a round table discussion at the House of Commons with politicians and experts from across the education sector to feed into UK policy on AI in Higher Education.
Unsurprisingly, one of the key areas of concern and discussion was the impact of AI on academic integrity: in a world where AI can write an essay, what does AI mean for what we assess and how we assess it? And how do we respond in the short term?
In this week’s blog post I’ll summarise the discussion and share what we agreed would be the most likely new model of assessment in HE in the post-AI world.
Observatorio IA - The Learning Science Newsletter
Recently, I’ve been doing a lot of work helping businesses to explore how to integrate AI to improve the efficiency and effectiveness of their organisations, especially their HR and L&D teams.
Fear of AI hallucinations along with concerns for data privacy means that most business leaders in start with the assumption that the power and potential of AI lies in building bespoke LLMs - i.e. building an internal search + retrieve engine based on internal data using a chat interface.
Last week, I was lucky enough to speak with colleagues at the University of Toronto about where we’re at with AI and education and where we might go next.
Why 2023-2024 will be remembered as the academic year that education embraced AI.
The goal of learner discovery is to deeply understand the “why” of your learners. Research shows that by doing this, we can optimise our designs for learner motivation and, as a result, learner achievement.
There’s been a lot of discussion in recent months about the risks associated with the rise of generative AI for higher education.
Much of the conversation has centred around the threat that tools like ChatGPT - which can generate essays and other text-based assessments in seconds - pose to academic integrity. More recently, others have started to explore more subtle risks of AI in the classroom, including issues and equity and the impact on the teacher-student relationship.
Much less work has been done on exploring the negative consequences that might result from not embracing AI in education.
There are a lot of AI-powered “summariser” tools on the market. These tools allow us to paste in unstructured text and have AI identify important sentences, extract key phrases and summarise the main points of the document.
My research shows that lots of us are using AI summariser tools to help us to learn more from notes that we take in class, in work, while reading documents, watching videos and listening to podcasts etc.
But, while summarising and giving structure to information can help to manage cognitive load and support basic recall, it doesn’t in itself help us to learn
As initial fear of AI among educators turns more and more into curiosity, the question I get asked most is: how can I assess learning if ChatGPT can write assignments?
This week, I’ll share a simple, three-step guide to get you started on designing assessments for the post-AI classroom, plus some tips on how to use ChatGPT to help you to rapidly redesign your assessments.
My initial research suggests that just six months after Open AI gave the world access to AI, we are already seeing the emergence of a significant AI-Education divide.
If the current trend that continues, there is a very real risk that - rather than democratising education - the rise of AI will widen the digital divide and deepen socio-economic inequality.
In this week’s blog post I’ll share some examples of how AI has impacted negatively on education equity and - on a more positive note - suggest some ways to reverse this trend and decrease, rather than increase, the digital and socio-economic divide.
How can we effectively communicate to education professionals that generative AI will enhance their work rather than replace them?
Pages
Tipo
-
aplicación (4)
-
artículo (89)
-
artículo científico (12)
-
boletín (3)
-
curso (1)
-
libro (2)
-
podcast (1)
-
presentación (6)
-
revista (1)
-
sitio web (13)
-
tuit (26)
-
vídeo (7)
Temas
-
AI literacy (1)
-
aplicaciones (31)
-
aprendizaje (10)
-
Australia (1)
-
Bard (4)
-
bibliografía (1)
-
big data (1)
-
Bing (3)
-
brecha digital (1)
-
chatbots (8)
-
chatGPT (44)
-
código abierto (1)
-
cognición (1)
-
cómo citar (2)
-
comparación (3)
-
consejos de uso (2)
-
control (1)
-
curso (1)
-
cursos (1)
-
DALLE2 (1)
-
deep learning (2)
-
deepfakes (1)
-
desafíos (1)
-
destrezas (1)
-
detección de uso (6)
-
diseño educativo (1)
-
disrupción (1)
-
docentes (1)
-
e-learning (1)
-
economía (1)
-
educación (50)
-
educación superior (10)
-
educadores (1)
-
embeddings (1)
-
encuesta (2)
-
enseñanza (5)
-
enseñanza de ELE (1)
-
enseñanza de IA (1)
-
entrevista (2)
-
escritura (2)
-
evaluación (4)
-
experimentación (1)
-
futuro de la IA (2)
-
futuro laboral (1)
-
Google (2)
-
Google Docs (1)
-
guía (2)
-
guía de uso (5)
-
historia (1)
-
IA generativa (3)
-
IA vs. humanos (1)
-
ideas (1)
-
ideas de uso (7)
-
idiomas (1)
-
impacto social (1)
-
información (1)
-
inglés (1)
-
investigación (5)
-
Kahoot (1)
-
LLM (2)
-
machine learning (2)
-
mapas (1)
-
medicina (1)
-
Microsoft (1)
-
Midjourney (1)
-
mundo laboral (1)
-
música (1)
-
niños (1)
-
noticias (1)
-
OpenAI (1)
-
opinión (4)
-
orígenes (1)
-
pedagogía (1)
-
plagio (3)
-
plugins (2)
-
presentación (1)
-
problemas (2)
-
programación (1)
-
prompts (1)
-
recomendaciones (1)
-
recopilación (16)
-
recursos (1)
-
regulación (3)
-
revista (1)
-
riesgos (5)
-
robots (1)
-
sesgos (3)
-
trabajo (3)
-
traducción (2)
-
turismo (1)
-
tutorbots (1)
-
tutores de IA (2)
-
tutoriales (3)
-
uso de la lengua (1)
-
uso del español (1)
-
uso en educación (6)
-
usos (4)
-
valoración (1)
-
viajes (1)
Autores
-
A. Lockett (1)
-
AI Foreground (1)
-
Alejandro Tinoco (1)
-
Alfaiz Ali (1)
-
Anca Dragan (1)
-
Andrew Yao (1)
-
Anna Mills (1)
-
Antonio Byrd (1)
-
Ashwin Acharya (1)
-
Barnard College (1)
-
Barsee (1)
-
Ben Dickson (1)
-
Brian Basgen (1)
-
Brian Roemmele (1)
-
Brian X. Chen (4)
-
Carmen Rodríguez (1)
-
Carrie Spector (1)
-
Ceren Ocak (1)
-
Ceylan Yeginsu (1)
-
Charles Hodges (1)
-
Csaba Kissi (1)
-
Daniel Kahneman (1)
-
David Álvarez (1)
-
David Green (1)
-
David Krueger (1)
-
Dawn Song (1)
-
DeepLearning.AI (1)
-
Dennis Pierce (1)
-
Dimitri Kanaris (1)
-
Eli Collins (1)
-
Emily Bender (1)
-
Enrique Dans (3)
-
Eric M. Anderman (1)
-
Eric W. Dolan (1)
-
Eric Wu (1)
-
Ethan Mollick (1)
-
Eva M. González (1)
-
Francis Y (3)
-
Frank Hutter (1)
-
Gary Marcus (1)
-
Geoffrey Hinton (1)
-
George Siemens (3)
-
Gillian Hadfield (1)
-
Gonzalo Abio (1)
-
Google (3)
-
Gorka Garate (1)
-
Greg Brockman (1)
-
Guillaume Bardet (1)
-
Hasan Toor (4)
-
Hassan Khosravi (1)
-
Helen Beetham (1)
-
Helena Matute (1)
-
Hélène Sauzéon (1)
-
Holly Hassel (1)
-
Ian Roberts (1)
-
James Zou (1)
-
Jan Brauner (1)
-
Jas Singh (3)
-
Javier Pastor (1)
-
Jeff Clune (1)
-
Jeffrey Watumull (1)
-
Jenay Robert (1)
-
Jennifer Niño (1)
-
Johanna C. (1)
-
Johannes Wachs (1)
-
Josh Bersin (1)
-
Juan Cuccarese (1)
-
Julian Estevez (1)
-
Kalley Huang (1)
-
Karie Willyerd (1)
-
Kevin Roose (1)
-
Kui Xie (1)
-
Lan Xue (1)
-
Lance Eaton (1)
-
Leonardo Flores (1)
-
Lijia Chen (1)
-
Lorna Waddington (1)
-
Lucía Vicente (1)
-
Manuel Graña (1)
-
Mark McCormack (1)
-
Marko Kolanovic (1)
-
Melissa Heikkilä (1)
-
Mert Yuksekgonul (1)
-
Microsoft (1)
-
MLA Style Center (1)
-
Muzzammil (1)
-
Nada Lavrač (1)
-
Naomi S. Baron (1)
-
Natasha Singer (2)
-
Nathan Lands (1)
-
Nicole Muscanell (1)
-
Nikki Siapno (1)
-
NLLB Team (1)
-
Noam Chomsky (1)
-
Nuria Oliver (1)
-
Oliver Whang (1)
-
Olumide Popoola (1)
-
OpenAI (2)
-
Paul Couvert (5)
-
Paula Escobar (1)
-
Pauline Lucas (1)
-
Petr Šigut (1)
-
Philip Torr (1)
-
Philippa Hardman (18)
-
Pieter Abbeel (1)
-
Pingping Chen (1)
-
Pratham (1)
-
Qiqi Gao (1)
-
Rafael Ruiz (1)
-
Rania Abdelghani (1)
-
Rebecca Marrone (1)
-
Rishit Patel (1)
-
Rowan Cheung (2)
-
Russell Group (1)
-
Sal Khan (1)
-
Samuel A. Pilar (1)
-
Samuel Fowler (1)
-
Sarah Z. Johnson (1)
-
Sepp Hochreiter (1)
-
Serge Belongie (1)
-
Shazia Sadiq (1)
-
Sheila McIlraith (1)
-
Sihem Amer-Yahia (1)
-
Sonja Bjelobaba (1)
-
Sören Mindermann (1)
-
Stan Waddell (1)
-
Stella Tan (1)
-
Stephen Marche (1)
-
Steve Lohr (1)
-
Stuart Russell (1)
-
Tegan Maharaj (1)
-
Tiffany Hsu (1)
-
Tim Leberecht (1)
-
Timothy McAdoo (1)
-
Tom Graham (1)
-
Tom Warren (1)
-
Tomáš Foltýnek (1)
-
Tong Wang (1)
-
Trevor Darrell (1)
-
Tulsi Soni (2)
-
Vicki Boykis. (1)
-
Víctor Millán (1)
-
Weixin Liang (1)
-
Xingdi Yuan (1)
-
Ya-Qin Zhang (1)
-
Yejin Choi (1)
-
Yen-Hsiang Wang (1)
-
Yining Mao (1)
-
Yoshua Bengio (1)
-
Yurii Nykon (1)
-
Zhijian Lin (1)
Fuentes
-
APA Style (1)
-
Aprende (1)
-
arXiv (4)
-
E-aprendizaje.es (1)
-
EDUCAUSE (9)
-
Educaweb (1)
-
El País (1)
-
ElDiario.es (3)
-
Enrique Dans (1)
-
Enseña (1)
-
eSchool News (1)
-
Explora (1)
-
Formación ELE (1)
-
Generación EZ (1)
-
GP Strategies (1)
-
HigherEdJobs (1)
-
IE Insights (1)
-
IEEE Access (2)
-
INTEF (1)
-
Intellias (1)
-
J.P.Morgan (1)
-
Joshbersin.com (1)
-
Kahoot! (1)
-
La Tercera (1)
-
Learning Letters (2)
-
Medium (1)
-
Meta AI (1)
-
Meta Research (1)
-
MLA (1)
-
Multiplex (1)
-
New York Times (14)
-
Open AI (1)
-
OpenAI (2)
-
PsyPost (1)
-
RTVE (1)
-
Russell Group (1)
-
Science (1)
-
TED (5)
-
TEDx (1)
-
The Atlantic (1)
-
The Conversation (4)
-
The Rundown (1)
-
The Verge (1)
-
ThinkBig (1)
-
Twitter (26)
-
Xataca (1)
-
Youtube (6)