The rapid adoption of generative language models has brought about substantial advancements in digital communication, while simultaneously raising concerns regarding the potential misuse of AI-generated content. Although numerous detection methods have been proposed to differentiate between AI and human-generated content, the fairness and robustness of these detectors remain underexplored. In this study, we evaluate the performance of several widely-used GPT detectors using writing samples from native and non-native English writers. Our findings reveal that these detectors consistently misclassify non-native English writing samples as AI-generated, whereas native writing samples are accurately identified. Furthermore, we demonstrate that simple prompting strategies can not only mitigate this bias but also effectively bypass GPT detectors, suggesting that GPT detectors may unintentionally penalize writers with constrained linguistic expressions. Our results call for a broader conversation about the ethical implications of deploying ChatGPT content detectors and caution against their use in evaluative or educational settings, particularly when they may inadvertently penalize or exclude non-native English speakers from the global discourse.
Observatorio IA - Yining Mao
Tipo
-
aplicación (3)
-
artículo (70)
-
artículo científico (10)
-
boletín (3)
-
curso (1)
-
libro (2)
-
podcast (1)
-
presentación (6)
-
revista (1)
-
sitio web (11)
-
tuit (26)
-
vídeo (5)
Temas
-
aplicaciones (28)
-
aprendizaje (8)
-
Australia (1)
-
Bard (4)
-
big data (1)
-
Bing (3)
-
brecha digital (1)
-
chatbots (8)
-
chatGPT (42)
-
código abierto (1)
-
cognición (1)
-
cómo citar (2)
-
comparación (3)
-
consejos de uso (2)
-
curso (1)
-
cursos (1)
-
DALLE2 (1)
-
deep learning (2)
-
deepfakes (1)
-
detección de uso (6)
-
diseño educativo (1)
-
disrupción (1)
-
e-learning (1)
-
economía (1)
-
educación (42)
-
educadores (1)
-
embeddings (1)
-
encuesta (2)
-
enseñanza (3)
-
enseñanza de IA (1)
-
entrevista (2)
-
escritura (2)
-
evaluación (4)
-
experimentación (1)
-
Google (2)
-
Google Docs (1)
-
guía (1)
-
guía de uso (5)
-
historia (1)
-
IA generativa (3)
-
IA vs. humanos (1)
-
ideas (1)
-
ideas de uso (7)
-
información (1)
-
investigación (4)
-
Kahoot (1)
-
LLM (1)
-
machine learning (2)
-
mapas (1)
-
medicina (1)
-
Microsoft (1)
-
mundo laboral (1)
-
música (1)
-
niños (1)
-
noticias (1)
-
opinión (4)
-
pedagogía (1)
-
plagio (3)
-
plugins (2)
-
presentación (1)
-
problemas (2)
-
programación (1)
-
prompts (1)
-
recomendaciones (1)
-
recopilación (15)
-
recursos (1)
-
regulación (1)
-
revista (1)
-
riesgos (4)
-
robots (1)
-
trabajo (3)
-
traducción (2)
-
turismo (1)
-
tutorbots (1)
-
tutores de IA (2)
-
tutoriales (3)
-
uso de la lengua (1)
-
uso del español (1)
-
uso en educación (4)
-
usos (4)
-
valoración (1)
-
viajes (1)
Autores
-
A. Lockett (1)
-
AI Foreground (1)
-
Alfaiz Ali (1)
-
Anna Mills (1)
-
Antonio Byrd (1)
-
Barnard College (1)
-
Barsee (1)
-
Ben Dickson (1)
-
Brian Roemmele (1)
-
Brian X. Chen (4)
-
Carmen Rodríguez (1)
-
Ceylan Yeginsu (1)
-
Csaba Kissi (1)
-
David Green (1)
-
DeepLearning.AI (1)
-
Dennis Pierce (1)
-
Dimitri Kanaris (1)
-
Eli Collins (1)
-
Emily Bender (1)
-
Enrique Dans (2)
-
Eric M. Anderman (1)
-
Eric Wu (1)
-
Ethan Mollick (1)
-
Eva M. González (1)
-
Francis Y (3)
-
Gary Marcus (1)
-
George Siemens (3)
-
Gonzalo Abio (1)
-
Google (3)
-
Gorka Garate (1)
-
Greg Brockman (1)
-
Guillaume Bardet (1)
-
Hasan Toor (4)
-
Hassan Khosravi (1)
-
Helen Beetham (1)
-
Hélène Sauzéon (1)
-
Holly Hassel (1)
-
Ian Roberts (1)
-
James Zou (1)
-
Jas Singh (3)
-
Javier Pastor (1)
-
Jeffrey Watumull (1)
-
Jenay Robert (1)
-
Johanna C. (1)
-
Josh Bersin (1)
-
Juan Cuccarese (1)
-
Julian Estevez (1)
-
Kalley Huang (1)
-
Karie Willyerd (1)
-
Kevin Roose (1)
-
Kui Xie (1)
-
Leonardo Flores (1)
-
Lijia Chen (1)
-
Lorna Waddington (1)
-
Manuel Graña (1)
-
Mark McCormack (1)
-
Marko Kolanovic (1)
-
Melissa Heikkilä (1)
-
Mert Yuksekgonul (1)
-
Microsoft (1)
-
MLA Style Center (1)
-
Muzzammil (1)
-
Nada Lavrač (1)
-
Naomi S. Baron (1)
-
Natasha Singer (1)
-
Nathan Lands (1)
-
Nicole Muscanell (1)
-
Nikki Siapno (1)
-
NLLB Team (1)
-
Noam Chomsky (1)
-
Nuria Oliver (1)
-
Oliver Whang (1)
-
Olumide Popoola (1)
-
Paul Couvert (5)
-
Paula Escobar (1)
-
Pauline Lucas (1)
-
Petr Šigut (1)
-
Philippa Hardman (18)
-
Pingping Chen (1)
-
Pratham (1)
-
Rafael Ruiz (1)
-
Rania Abdelghani (1)
-
Rebecca Marrone (1)
-
Rowan Cheung (2)
-
Russell Group (1)
-
Sal Khan (1)
-
Samuel A. Pilar (1)
-
Samuel Fowler (1)
-
Sarah Z. Johnson (1)
-
Sepp Hochreiter (1)
-
Serge Belongie (1)
-
Shazia Sadiq (1)
-
Sihem Amer-Yahia (1)
-
Sonja Bjelobaba (1)
-
Stella Tan (1)
-
Stephen Marche (1)
-
Steve Lohr (1)
-
Tiffany Hsu (1)
-
Tim Leberecht (1)
-
Timothy McAdoo (1)
-
Tom Graham (1)
-
Tom Warren (1)
-
Tomáš Foltýnek (1)
-
Tong Wang (1)
-
Tulsi Soni (2)
-
Vicki Boykis. (1)
-
Víctor Millán (1)
-
Weixin Liang (1)
-
Xingdi Yuan (1)
-
Yejin Choi (1)
-
Yen-Hsiang Wang (1)
-
Yining Mao (1)
-
Yurii Nykon (1)
-
Zhijian Lin (1)
Fuentes
-
APA Style (1)
-
arXiv (3)
-
EDUCAUSE (3)
-
Educaweb (1)
-
ElDiario.es (2)
-
Enrique Dans (1)
-
eSchool News (1)
-
Generación EZ (1)
-
GP Strategies (1)
-
HigherEdJobs (1)
-
IE Insights (1)
-
IEEE Access (2)
-
Intellias (1)
-
J.P.Morgan (1)
-
Joshbersin.com (1)
-
Kahoot! (1)
-
La Tercera (1)
-
Learning Letters (2)
-
Meta AI (1)
-
Meta Research (1)
-
MLA (1)
-
Multiplex (1)
-
New York Times (13)
-
Open AI (1)
-
OpenAI (1)
-
RTVE (1)
-
Russell Group (1)
-
TED (5)
-
TEDx (1)
-
The Atlantic (1)
-
The Conversation (4)
-
The Rundown (1)
-
The Verge (1)
-
ThinkBig (1)
-
Twitter (26)
-
Xataca (1)
-
Youtube (5)