Recent advances in generative pre-trained transformer large language models have emphasised the potential risks of unfair use of artificial intelligence (AI) generated content in an academic environment and intensified efforts in searching for solutions to detect such content. The paper examines the general functionality of detection tools for artificial intelligence generated text and evaluates them based on accuracy and error type analysis. Specifically, the study seeks to answer research questions about whether existing detection tools can reliably differentiate between human-written text and ChatGPT-generated text, and whether machine translation and content obfuscation techniques affect the detection of AI-generated text. The research covers 12 publicly available tools and two commercial systems (Turnitin and PlagiarismCheck) that are widely used in the academic setting. The researchers conclude that the available detection tools are neither accurate nor reliable and have a main bias towards classifying the output as human-written rather than detecting AI-generated text. Furthermore, content obfuscation techniques significantly worsen the performance of tools. The study makes several significant contributions. First, it summarises up-to-date similar scientific and non-scientific efforts in the field. Second, it presents the result of one of the most comprehensive tests conducted so far, based on a rigorous research methodology, an original document set, and a broad coverage of tools. Third, it discusses the implications and drawbacks of using detection tools for AI-generated text in academic settings.
Observatorio IA - Lorna Waddington
Tipo
-
aplicación (3)
-
artículo (70)
-
artículo científico (10)
-
boletín (3)
-
curso (1)
-
libro (2)
-
podcast (1)
-
presentación (6)
-
revista (1)
-
sitio web (11)
-
tuit (26)
-
vídeo (5)
Temas
-
aplicaciones (28)
-
aprendizaje (8)
-
Australia (1)
-
Bard (4)
-
big data (1)
-
Bing (3)
-
brecha digital (1)
-
chatbots (8)
-
chatGPT (42)
-
código abierto (1)
-
cognición (1)
-
cómo citar (2)
-
comparación (3)
-
consejos de uso (2)
-
curso (1)
-
cursos (1)
-
DALLE2 (1)
-
deep learning (2)
-
deepfakes (1)
-
detección de uso (6)
-
diseño educativo (1)
-
disrupción (1)
-
e-learning (1)
-
economía (1)
-
educación (42)
-
educadores (1)
-
embeddings (1)
-
encuesta (2)
-
enseñanza (3)
-
enseñanza de IA (1)
-
entrevista (2)
-
escritura (2)
-
evaluación (4)
-
experimentación (1)
-
Google (2)
-
Google Docs (1)
-
guía (1)
-
guía de uso (5)
-
historia (1)
-
IA generativa (3)
-
IA vs. humanos (1)
-
ideas (1)
-
ideas de uso (7)
-
información (1)
-
investigación (4)
-
Kahoot (1)
-
LLM (1)
-
machine learning (2)
-
mapas (1)
-
medicina (1)
-
Microsoft (1)
-
mundo laboral (1)
-
música (1)
-
niños (1)
-
noticias (1)
-
opinión (4)
-
pedagogía (1)
-
plagio (3)
-
plugins (2)
-
presentación (1)
-
problemas (2)
-
programación (1)
-
prompts (1)
-
recomendaciones (1)
-
recopilación (15)
-
recursos (1)
-
regulación (1)
-
revista (1)
-
riesgos (4)
-
robots (1)
-
trabajo (3)
-
traducción (2)
-
turismo (1)
-
tutorbots (1)
-
tutores de IA (2)
-
tutoriales (3)
-
uso de la lengua (1)
-
uso del español (1)
-
uso en educación (4)
-
usos (4)
-
valoración (1)
-
viajes (1)
Autores
-
A. Lockett (1)
-
AI Foreground (1)
-
Alfaiz Ali (1)
-
Anna Mills (1)
-
Antonio Byrd (1)
-
Barnard College (1)
-
Barsee (1)
-
Ben Dickson (1)
-
Brian Roemmele (1)
-
Brian X. Chen (4)
-
Carmen Rodríguez (1)
-
Ceylan Yeginsu (1)
-
Csaba Kissi (1)
-
David Green (1)
-
DeepLearning.AI (1)
-
Dennis Pierce (1)
-
Dimitri Kanaris (1)
-
Eli Collins (1)
-
Emily Bender (1)
-
Enrique Dans (2)
-
Eric M. Anderman (1)
-
Eric Wu (1)
-
Ethan Mollick (1)
-
Eva M. González (1)
-
Francis Y (3)
-
Gary Marcus (1)
-
George Siemens (3)
-
Gonzalo Abio (1)
-
Google (3)
-
Gorka Garate (1)
-
Greg Brockman (1)
-
Guillaume Bardet (1)
-
Hasan Toor (4)
-
Hassan Khosravi (1)
-
Helen Beetham (1)
-
Hélène Sauzéon (1)
-
Holly Hassel (1)
-
Ian Roberts (1)
-
James Zou (1)
-
Jas Singh (3)
-
Javier Pastor (1)
-
Jeffrey Watumull (1)
-
Jenay Robert (1)
-
Johanna C. (1)
-
Josh Bersin (1)
-
Juan Cuccarese (1)
-
Julian Estevez (1)
-
Kalley Huang (1)
-
Karie Willyerd (1)
-
Kevin Roose (1)
-
Kui Xie (1)
-
Leonardo Flores (1)
-
Lijia Chen (1)
-
Lorna Waddington (1)
-
Manuel Graña (1)
-
Mark McCormack (1)
-
Marko Kolanovic (1)
-
Melissa Heikkilä (1)
-
Mert Yuksekgonul (1)
-
Microsoft (1)
-
MLA Style Center (1)
-
Muzzammil (1)
-
Nada Lavrač (1)
-
Naomi S. Baron (1)
-
Natasha Singer (1)
-
Nathan Lands (1)
-
Nicole Muscanell (1)
-
Nikki Siapno (1)
-
NLLB Team (1)
-
Noam Chomsky (1)
-
Nuria Oliver (1)
-
Oliver Whang (1)
-
Olumide Popoola (1)
-
Paul Couvert (5)
-
Paula Escobar (1)
-
Pauline Lucas (1)
-
Petr Šigut (1)
-
Philippa Hardman (18)
-
Pingping Chen (1)
-
Pratham (1)
-
Rafael Ruiz (1)
-
Rania Abdelghani (1)
-
Rebecca Marrone (1)
-
Rowan Cheung (2)
-
Russell Group (1)
-
Sal Khan (1)
-
Samuel A. Pilar (1)
-
Samuel Fowler (1)
-
Sarah Z. Johnson (1)
-
Sepp Hochreiter (1)
-
Serge Belongie (1)
-
Shazia Sadiq (1)
-
Sihem Amer-Yahia (1)
-
Sonja Bjelobaba (1)
-
Stella Tan (1)
-
Stephen Marche (1)
-
Steve Lohr (1)
-
Tiffany Hsu (1)
-
Tim Leberecht (1)
-
Timothy McAdoo (1)
-
Tom Graham (1)
-
Tom Warren (1)
-
Tomáš Foltýnek (1)
-
Tong Wang (1)
-
Tulsi Soni (2)
-
Vicki Boykis. (1)
-
Víctor Millán (1)
-
Weixin Liang (1)
-
Xingdi Yuan (1)
-
Yejin Choi (1)
-
Yen-Hsiang Wang (1)
-
Yining Mao (1)
-
Yurii Nykon (1)
-
Zhijian Lin (1)
Fuentes
-
APA Style (1)
-
arXiv (3)
-
EDUCAUSE (3)
-
Educaweb (1)
-
ElDiario.es (2)
-
Enrique Dans (1)
-
eSchool News (1)
-
Generación EZ (1)
-
GP Strategies (1)
-
HigherEdJobs (1)
-
IE Insights (1)
-
IEEE Access (2)
-
Intellias (1)
-
J.P.Morgan (1)
-
Joshbersin.com (1)
-
Kahoot! (1)
-
La Tercera (1)
-
Learning Letters (2)
-
Meta AI (1)
-
Meta Research (1)
-
MLA (1)
-
Multiplex (1)
-
New York Times (13)
-
Open AI (1)
-
OpenAI (1)
-
RTVE (1)
-
Russell Group (1)
-
TED (5)
-
TEDx (1)
-
The Atlantic (1)
-
The Conversation (4)
-
The Rundown (1)
-
The Verge (1)
-
ThinkBig (1)
-
Twitter (26)
-
Xataca (1)
-
Youtube (5)