Large language models like ChatGPT efficiently provide users with information about various topics, presenting a potential substitute for searching the web and asking people for help online. But since users interact privately with the model, these models may drastically reduce the amount of publicly available human-generated data and knowledge resources. This substitution can present a significant problem in securing training data for future models. In this work, we investigate how the release of ChatGPT changed human-generated open data on the web by analyzing the activity on Stack Overflow, the leading online Q\&A platform for computer programming. We find that relative to its Russian and Chinese counterparts, where access to ChatGPT is limited, and to similar forums for mathematics, where ChatGPT is less capable, activity on Stack Overflow significantly decreased. A difference-in-differences model estimates a 16\% decrease in weekly posts on Stack Overflow. This effect increases in magnitude over time, and is larger for posts related to the most widely used programming languages. Posts made after ChatGPT get similar voting scores than before, suggesting that ChatGPT is not merely displacing duplicate or low-quality content. These results suggest that more users are adopting large language models to answer questions and they are better substitutes for Stack Overflow for languages for which they have more training data. Using models like ChatGPT may be more efficient for solving certain programming problems, but its widespread adoption and the resulting shift away from public exchange on the web will limit the open data people and models can learn from in the future.
Observatorio IA - LLM
Ever since OpenAI released ChatGPT, the internet has been awash in synthetic text, with suggested applications including robo-lawyers, robo-therapists, and robo-journalists. I will overview how language models work and why they can seem to be using language meaningfully-despite only modeling the distribution of word forms. This leads into a discussion of the risks we identified in the Stochastic Parrots paper (Bender, Gebru et al 2021) and how they are playing out in the era of ChatGPT. Finally, I will explore what must hold for an appropriate use case for text synthesis.
Tipo
-
aplicación (4)
-
artículo (86)
-
artículo científico (12)
-
boletín (3)
-
curso (1)
-
libro (2)
-
podcast (1)
-
presentación (6)
-
revista (1)
-
sitio web (11)
-
tuit (26)
-
vídeo (7)
Temas
-
aplicaciones (30)
-
aprendizaje (8)
-
Australia (1)
-
Bard (4)
-
bibliografía (1)
-
big data (1)
-
Bing (3)
-
brecha digital (1)
-
chatbots (8)
-
chatGPT (44)
-
código abierto (1)
-
cognición (1)
-
cómo citar (2)
-
comparación (3)
-
consejos de uso (2)
-
control (1)
-
curso (1)
-
cursos (1)
-
DALLE2 (1)
-
deep learning (2)
-
deepfakes (1)
-
desafíos (1)
-
destrezas (1)
-
detección de uso (6)
-
diseño educativo (1)
-
disrupción (1)
-
docentes (1)
-
e-learning (1)
-
economía (1)
-
educación (48)
-
educación superior (10)
-
educadores (1)
-
embeddings (1)
-
encuesta (2)
-
enseñanza (3)
-
enseñanza de IA (1)
-
entrevista (2)
-
escritura (2)
-
evaluación (4)
-
experimentación (1)
-
futuro de la IA (2)
-
futuro laboral (1)
-
Google (2)
-
Google Docs (1)
-
guía (1)
-
guía de uso (5)
-
historia (1)
-
IA generativa (3)
-
IA vs. humanos (1)
-
ideas (1)
-
ideas de uso (7)
-
impacto social (1)
-
información (1)
-
investigación (5)
-
Kahoot (1)
-
LLM (2)
-
machine learning (2)
-
mapas (1)
-
medicina (1)
-
Microsoft (1)
-
Midjourney (1)
-
mundo laboral (1)
-
música (1)
-
niños (1)
-
noticias (1)
-
OpenAI (1)
-
opinión (4)
-
orígenes (1)
-
pedagogía (1)
-
plagio (3)
-
plugins (2)
-
presentación (1)
-
problemas (2)
-
programación (1)
-
prompts (1)
-
recomendaciones (1)
-
recopilación (15)
-
recursos (1)
-
regulación (3)
-
revista (1)
-
riesgos (5)
-
robots (1)
-
sesgos (3)
-
trabajo (3)
-
traducción (2)
-
turismo (1)
-
tutorbots (1)
-
tutores de IA (2)
-
tutoriales (3)
-
uso de la lengua (1)
-
uso del español (1)
-
uso en educación (6)
-
usos (4)
-
valoración (1)
-
viajes (1)
Autores
-
A. Lockett (1)
-
AI Foreground (1)
-
Alejandro Tinoco (1)
-
Alfaiz Ali (1)
-
Anca Dragan (1)
-
Andrew Yao (1)
-
Anna Mills (1)
-
Antonio Byrd (1)
-
Ashwin Acharya (1)
-
Barnard College (1)
-
Barsee (1)
-
Ben Dickson (1)
-
Brian Basgen (1)
-
Brian Roemmele (1)
-
Brian X. Chen (4)
-
Carmen Rodríguez (1)
-
Carrie Spector (1)
-
Ceren Ocak (1)
-
Ceylan Yeginsu (1)
-
Charles Hodges (1)
-
Csaba Kissi (1)
-
Daniel Kahneman (1)
-
David Álvarez (1)
-
David Green (1)
-
David Krueger (1)
-
Dawn Song (1)
-
DeepLearning.AI (1)
-
Dennis Pierce (1)
-
Dimitri Kanaris (1)
-
Eli Collins (1)
-
Emily Bender (1)
-
Enrique Dans (3)
-
Eric M. Anderman (1)
-
Eric W. Dolan (1)
-
Eric Wu (1)
-
Ethan Mollick (1)
-
Eva M. González (1)
-
Francis Y (3)
-
Frank Hutter (1)
-
Gary Marcus (1)
-
Geoffrey Hinton (1)
-
George Siemens (3)
-
Gillian Hadfield (1)
-
Gonzalo Abio (1)
-
Google (3)
-
Gorka Garate (1)
-
Greg Brockman (1)
-
Guillaume Bardet (1)
-
Hasan Toor (4)
-
Hassan Khosravi (1)
-
Helen Beetham (1)
-
Helena Matute (1)
-
Hélène Sauzéon (1)
-
Holly Hassel (1)
-
Ian Roberts (1)
-
James Zou (1)
-
Jan Brauner (1)
-
Jas Singh (3)
-
Javier Pastor (1)
-
Jeff Clune (1)
-
Jeffrey Watumull (1)
-
Jenay Robert (1)
-
Johanna C. (1)
-
Johannes Wachs (1)
-
Josh Bersin (1)
-
Juan Cuccarese (1)
-
Julian Estevez (1)
-
Kalley Huang (1)
-
Karie Willyerd (1)
-
Kevin Roose (1)
-
Kui Xie (1)
-
Lan Xue (1)
-
Lance Eaton (1)
-
Leonardo Flores (1)
-
Lijia Chen (1)
-
Lorna Waddington (1)
-
Lucía Vicente (1)
-
Manuel Graña (1)
-
Mark McCormack (1)
-
Marko Kolanovic (1)
-
Melissa Heikkilä (1)
-
Mert Yuksekgonul (1)
-
Microsoft (1)
-
MLA Style Center (1)
-
Muzzammil (1)
-
Nada Lavrač (1)
-
Naomi S. Baron (1)
-
Natasha Singer (2)
-
Nathan Lands (1)
-
Nicole Muscanell (1)
-
Nikki Siapno (1)
-
NLLB Team (1)
-
Noam Chomsky (1)
-
Nuria Oliver (1)
-
Oliver Whang (1)
-
Olumide Popoola (1)
-
OpenAI (2)
-
Paul Couvert (5)
-
Paula Escobar (1)
-
Pauline Lucas (1)
-
Petr Šigut (1)
-
Philip Torr (1)
-
Philippa Hardman (18)
-
Pieter Abbeel (1)
-
Pingping Chen (1)
-
Pratham (1)
-
Qiqi Gao (1)
-
Rafael Ruiz (1)
-
Rania Abdelghani (1)
-
Rebecca Marrone (1)
-
Rishit Patel (1)
-
Rowan Cheung (2)
-
Russell Group (1)
-
Sal Khan (1)
-
Samuel A. Pilar (1)
-
Samuel Fowler (1)
-
Sarah Z. Johnson (1)
-
Sepp Hochreiter (1)
-
Serge Belongie (1)
-
Shazia Sadiq (1)
-
Sheila McIlraith (1)
-
Sihem Amer-Yahia (1)
-
Sonja Bjelobaba (1)
-
Sören Mindermann (1)
-
Stan Waddell (1)
-
Stella Tan (1)
-
Stephen Marche (1)
-
Steve Lohr (1)
-
Stuart Russell (1)
-
Tegan Maharaj (1)
-
Tiffany Hsu (1)
-
Tim Leberecht (1)
-
Timothy McAdoo (1)
-
Tom Graham (1)
-
Tom Warren (1)
-
Tomáš Foltýnek (1)
-
Tong Wang (1)
-
Trevor Darrell (1)
-
Tulsi Soni (2)
-
Vicki Boykis. (1)
-
Víctor Millán (1)
-
Weixin Liang (1)
-
Xingdi Yuan (1)
-
Ya-Qin Zhang (1)
-
Yejin Choi (1)
-
Yen-Hsiang Wang (1)
-
Yining Mao (1)
-
Yoshua Bengio (1)
-
Yurii Nykon (1)
-
Zhijian Lin (1)
Fuentes
-
APA Style (1)
-
arXiv (4)
-
E-aprendizaje.es (1)
-
EDUCAUSE (7)
-
Educaweb (1)
-
El País (1)
-
ElDiario.es (3)
-
Enrique Dans (1)
-
eSchool News (1)
-
Formación ELE (1)
-
Generación EZ (1)
-
GP Strategies (1)
-
HigherEdJobs (1)
-
IE Insights (1)
-
IEEE Access (2)
-
INTEF (1)
-
Intellias (1)
-
J.P.Morgan (1)
-
Joshbersin.com (1)
-
Kahoot! (1)
-
La Tercera (1)
-
Learning Letters (2)
-
Medium (1)
-
Meta AI (1)
-
Meta Research (1)
-
MLA (1)
-
Multiplex (1)
-
New York Times (14)
-
Open AI (1)
-
OpenAI (2)
-
PsyPost (1)
-
RTVE (1)
-
Russell Group (1)
-
Science (1)
-
TED (5)
-
TEDx (1)
-
The Atlantic (1)
-
The Conversation (4)
-
The Rundown (1)
-
The Verge (1)
-
ThinkBig (1)
-
Twitter (26)
-
Xataca (1)
-
Youtube (6)