Observatorio IA - investigación

New research by the psychologists Lucía Vicente and Helena Matute from Deusto University in Bilbao, Spain, provides evidence that people can inherit artificial intelligence biases (systematic errors in AI outputs) in their decisions. The astonishing results achieved by artificial intelligence systems, which can, for example, hold a conversation as a human does, have given this technology an image of high reliability. More and more professional fields are implementing AI-based tools to support the decision-making of specialists to minimise errors in their decisions. However, this technology is not without risks due to biases in AI results. We must consider that the data used to train AI models reflects past human decisions. If this data hides patterns of systematic errors, the AI algorithm will learn and reproduce these errors. Indeed, extensive evidence indicates that AI systems do inherit and amplify human biases. The most relevant finding of Vicente and Matute’s research is that the opposite effect may also occur: that humans inherit AI biases. That is, not only would AI inherit its biases from human data, but people could also inherit those biases from AI, with the risk of getting trapped in a dangerous loop. Scientific Reports publishes the results of Vicente and Matute’s research. In the series of three experiments conducted by these researchers, volunteers performed a medical diagnosis task. A group of the participants were assisted by a biased AI system (it exhibited a systematic error) during this task, while the control group were unassisted. The AI, the medical diagnosis task, and the disease were fictitious. The whole setting was a simulation to avoid interference with real situations. The participants assisted by the biased AI system made the same type of errors as the AI, while the control group did not make these mistakes. Thus, AI recommendations influenced participant’s decisions. Yet the most significant finding of the research was that, after interaction with the AI system, those volunteers continued to mimic its systematic error when they switched to performing the diagnosis task unaided. In other words, participants who were first assisted by the biased AI replicated its bias in a context without this support, thus showing an inherited bias. This effect was not observed for the participants in the control group, who performed the task unaided from the beginning. These results show that biased information by an artificial intelligence model can have a perdurable negative impact on human decisions. The finding of an inheritance of AI bias effect points to the need for further psychological and multidisciplinary research on AI-human interaction. Furthermore, evidence-based regulation is also needed to guarantee fair and ethical AI, considering not only the AI technical features but also the psychological aspects of the IA and human collaboration.
This article examines the potential impact of large language models (LLMs) on higher education, using the integration of ChatGPT in Australian universities as a case study. Drawing on the experience of the first 100 days of integration, the authors conducted a content analysis of university websites and quotes from spokespeople in the media. Despite the potential benefits of LLMs in transforming teaching and learning, early media coverage has primarily focused on the obstacles to their adoption. The authors argue that the lack of official recommendations for Artificial Intelligence (AI) implementation has further impeded progress. Several recommendations for successful AI integration in higher education are proposed to address these challenges. These include developing a clear AI strategy that aligns with institutional goals, investing in infrastructure and staff training, and establishing guidelines for the ethical and transparent use of AI. The importance of involving all stakeholders in the decision-making process to ensure successful adoption is also stressed. This article offers valuable insights for policymakers and university leaders interested in harnessing the potential of AI to improve the quality of education and enhance the student experience.
This study aims to develop an AI education policy for higher education by examining the perceptions and implications of text generative AI technologies. Data was collected from 457 students and 180 teachers and staff across various disciplines in Hong Kong universities, using both quantitative and qualitative research methods. Based on the findings, the study proposes an AI Ecological Education Policy Framework to address the multifaceted implications of AI integration in university teaching and learning. This framework is organized into three dimensions: Pedagogical, Governance, and Operational. The Pedagogical dimension concentrates on using AI to improve teaching and learning outcomes, while the Governance dimension tackles issues related to privacy, security, and accountability. The Operational dimension addresses matters concerning infrastructure and training. The framework fosters a nuanced understanding of the implications of AI integration in academic settings, ensuring that stakeholders are aware of their responsibilities and can take appropriate actions accordingly.
Through research and community collaboration, we’re advancing the state-of-the-art in Generative AI, Computer Vision, NLP, Infrastructure and other areas of AI. We’re also applying our learnings to innovative, safe products, tools and experiences across our family of apps.